Networked control and observation for Master-Slave systems
نویسندگان
چکیده
This chapter concerns the design of a remote control loop constituted by a Slave system (with computing and energy limitations) and a Master computer, communicating via an Internet connection. In such a situation, the communication cost is reduced but the Quality of Service of the Internet connection is not guaranteed. In particular, when the Slave dynamics are expected to be fast enough, the network induces perturbations (delays, jitters, packet dropouts and sampling) that may damage the performance. Here, the proposed solution relies on a delay-dependent, state-feedback control, computed by the Master on the basis of an observer. This last estimates the present Slave’s state from its past sampled outputs, despite the various delays. Then, the computing task is concentrated in the Master. The theoretical results are based on the Lyapunov-Krasovskii functional and the approach of LMI, which guarantee the stabilization performance with respect to the expected maximum delay of the connection. Two strategies are applied: one is a constant controller/observer gain strategy, which takes into account a fixed upperbound for the communication delay. The second strategy aims at improving the performance by adapting the gains to the available network QoS (here, with two possible upperbounds).
منابع مشابه
Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach
There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کاملPhase Tuning in Synchronization of Nonlinear Master-slave Oscillating Systems Using Decomposition Method
متن کامل
Modelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008